Population Connectivity Shifts at High Frequency within an Open-Coast Marine Protected Area Network

نویسندگان

  • Geoffrey S. Cook
  • P. Ed Parnell
  • Lisa A. Levin
چکیده

A complete understanding of population connectivity via larval dispersal is of great value to the effective design and management of marine protected areas (MPA). However empirical estimates of larval dispersal distance, self-recruitment, and within season variability of population connectivity patterns and their influence on metapopulation structure remain rare. We used high-resolution otolith microchemistry data from the temperate reef fish Hypsypops rubicundus to explore biweekly, seasonal, and annual connectivity patterns in an open-coast MPA network. The three MPAs, spanning 46 km along the southern California coastline were connected by larval dispersal, but the magnitude and direction of connections reversed between 2008 and 2009. Self-recruitment, i.e. spawning, dispersal, and settlement to the same location, was observed at two locations, one of which is a MPA. Self-recruitment to this MPA ranged from 50-84%; within the entire 60 km study region, self-recruitment accounted for 45% of all individuals settling to study reefs. On biweekly time scales we observed directional variability in alongshore current data and larval dispersal trajectories; if viewed in isolation these data suggest the system behaves as a source-sink metapopulation. However aggregate biweekly data over two years reveal a reef network in which H. rubicundus behaves more like a well-mixed metapopulation. As one of the few empirical studies of population connectivity within a temperate open coast reef network, this work can inform the MPA design process, implementation of ecosystem based management plans, and facilitate conservation decisions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connectivity of the Habitat-Forming Kelp, Ecklonia radiata within and among Estuaries and Open Coast

With marine protected areas being established worldwide there is a pressing need to understand how the physical setting in which these areas are placed influences patterns of dispersal and connectivity of important marine organisms. This is particularly critical for dynamic and complex nearshore marine environments where patterns of genetic structure of organisms are often chaotic and uncoupled...

متن کامل

An equilibrium model for predicting the efficacy of marine protected areas in coastal environments

Quantitative models of marine protected area (MPA) proposals can be used to compare outcomes given current biological knowledge. We used a model of a linear coastline, with 200 discrete cells each spanning 1.6 km of coast. This model is used to evaluate alternative proposals for marine protected area networks, predicting equilibrium changes in abundances and harvests while accounting for disper...

متن کامل

Patterns of Fish Connectivity between a Marine Protected Area and Surrounding Fished Areas

Patterns of connectivity and self-recruitment are recognized as key factors shaping the dynamics of marine populations. Connectivity is also essential for maintaining and restoring natural ecological processes with genetic diversity contributing to the adaptation and persistence of any species in the face of global disturbances. Estimates of connectivity are crucial to inform the design of both...

متن کامل

Replicate divergence between and within sounds in a marine fish: the copper rockfish (Sebastes caurinus).

Understanding the factors that influence larval dispersal and connectivity among marine populations is critical to the conservation and sustainable management of marine resources. We assessed genetic subdivision among ten populations of copper rockfish (Sebastes caurinus) representing paired samples of outer coast and the heads of inlets in five replicate sounds on the west coast of Vancouver I...

متن کامل

No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014